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The impact of a shock wave on a movable wall 

By R. F. MWER 
Department of the Mechanics of Fluids, University of Manchester 

(Received 29 August 1957) 

SUMMARY 
An approximate solution is devised for the one-dimensional 

motion following the impact of a shock wave on a wall which is free 
to move. The approximate solution neglects changes in entropy 
occurring through the reflected and transmitted shocks, thus 
reducing the problem to one of a simple wave type. The 
asymptotic behaviour of the system is considered and it is shown 
by exact physical argument that the transmitted shock eventually 
attains the same strength as the incident shock and that the reflected 
shock ultimately decays to a sound wave. 

An experimental investigation of the interaction was made, 
using thin walls of cellulose acetate, in a shock tube at an incident 
shock Mach number of 1.50. Agreement between the theoretical 
and experimental results, especially for the path followed by the 
wall, was found to be good. 

1. INTRODUCTION 
When a wall of small mass, initially at rest and free to  move under 

impact, is struck head-on by a plane sbock wave, the resulting difference in 
pressure between the two sides of the wall causes it to accelerate in the 
direction of the initial motion of the incident shock wave and thereby to 
send out compression waves into the region ahead of the wall and rarefaction 
waves into the region behind it. The compression waves overtake and 
eventually coalesce to  form a shock, whereas the rarefaction waves catch 
up the reflected shock and weaken it. The appropriate wave diagram, for 
the interaction is sketched in figure 1, where x and t designate distance and 
time respectively. Ultimately the pressure difference across the wall 
vanishes, so that the wall and the transmitted shock attain constant speeds ; 
the reflected shock on the other hand decays to a sound wave. 

This paper describes a theoretical and experimental study of the problem, 
which will be treated as essentially one-dimensional. 

The complete analytical problem of determining the motion of the wall, 
the behaviour of the transmitted shock and the behaviour of the reflected 
shock, is difficult and not attempted here. Courant & Friedrichs (1948) 
state, when discussing the strong shock produced by an accelerating piston, 
that “the problem is an initial boundary value problem with an unknown 
boundary and that no direct theoretical treatment seems possible ”. Pillow 
& Levey (1947) and Pillow (1949) found an analytical solution for the shock 
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produced by a uniformly accelerating piston, which is correct to the first 
order in entropy changes through the shock. It would seem difficult, 
however, to extend their method to a problem involving a more general 
motion of the piston and more difficult still to extend it to the present problem 
in which the motion of the piston is unknown to start with. Courant & 
Friedrichs (1948), Friedrichs (1948) and Rudinger (1955) indicate that the 
problem could be solved numerically by a step-by-step integration by the 
method of characteristics, but since the motions’ of the wall, the transmitted 
shock and the reflected shock are all interdependent such a solution would 
be lengthy and tedious. 

Figure 1. Wave diagram for the motion following the one-dimensional impact of 
a shock wave on a movable wall. 

The theoretical solution given in this paper is approximate. The 
,changes in specific entropy occurring through the transmitted and reflected 
shocks are neglected, so that the problem reduces to one of a simple wave 
type in which it is possible to determine the motion of the wall independently 
.of the transmitted and reflected shocks. Having determined the path 
followed by the wall, the transmitted and reflected shocks are determined 
by Friedrichs’ (1948) theory. Such a theory is accurate to the second order 
in shock strength and should therefore be reasonably accurate provided that 
the incident shock is not too strong. 

The asymptotic behaviour of the system is considered and is shown to 
be exactly determinable independently of the approximate theory. Com- 
parison is made, for varying shock Mach numbers, between the asymptotic 
speed of the wall as determined exactly and as determined by the approximate 
theory, the difference between the two giving a measure of the accuracy 
of the approximate theory. 
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The experimental investigation was made using movable walls of thin 
cellulose acetate, in a shock tube at an incident Mach number of 1.5. The 
ideal one-dimensional conditions of the theory could not be reproduced 
exactly because of the difficulty in avoiding a small amount of leakage past 
the edges of the wall, but results of the experiment show that the approxi- 
mation to the one-dimensional problem was quite good, and in particular, 
that the motion of the wall was, for some time at least, little affected by the 
small amount of leakage. The agreement between theory and experiment 
for the path followed by the wall was excellent; for the shocks some 
discrepancies between theory and experiment were observed which could 
be attributed, in part at least, to the leakage past the edges of the wall. 

2. THEORY 
The full characteristic equations for the regions between the shocks and 

the wall are 
a2 as 

~ ( ~ u ~ u ) + ( u ~ a ) - -  at y - i  ax a ( - y - i  sku)= * (y-l)cJi 

and Ds/Dt = 0, where a, u, s are respectively the velocity of sound, particle 
velocity and specific entropy. If the changes in specific entropy through 
the transmitted and reflected shocks are neglected, the flow in the regions 
ahead of and behind the wall is isentropic and the characteristic equations 
reduce to 

(y+ a * u )  +(u a> - a ( - sku) = o .  ax y - i  
We then have that 

dx 
Y - 1  dt a + u = constant along - = u + a, p = -  2 

.and dx 
a-u = constant along - = u-u.  

2 
Q=,_1 dt 

P and Q are the Riemann invariants. Since the change in specific entropy 
through the transmitted shock is neglected it follows that Q must be constant 
through the transmitted shock. Q is everywhere constant ahead of the 
transmitted shock and so must be everywhere constant ahead of the wall. 
Similarly it may be argued that P is everywhere constant behind the wall. 
Since Q is constant in the flow region between the wall and the transmitted 
shock, the positive characteristics (lines along which P is constant) are 
straight lines along which the flow properties are constant. In other words, 
the compression waves are simple waves. Similarly the negative character- 
istics in the region between the wall and the reflected shock are straight 
lines along which the flow properties are constant. 

Consider some general point ef, figure 2, on the wall, where f refers to 
the conditions on the leading side of the wall and e refers to conditions on 
the trailing side. Ahead of the wall 

af -u f  = constant = Ql, Qf = y--l 
2 
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which, together with the isentropic relation, leads to 
ZY/(Y-1) 

P l  
wherep is the pressure and the suffix 1 denotes the uniform initial conditions 
ahead of the wall. 

X- 

Figure 2. Wave diagram 1 denotes the region of uniform conditions into which the 
transmitted shock is advancing and 2 denotes the region of uniform conditions 
into which the reflected shock is advancing. 

Similarly we have for the pressure on the trailing side of the wall 

P ,  
P e ,  

hence 

where the suffix 0 denotes the conditions at t = 0, and u,  = us = u,. Thus. 

Before integrating (1) it is convenient to introduce the non-dimensional 
variables 

U = u/al, A = a/al,  5 = x / a l t , ,  T = tlt,, 
where t ,  = 2al/(y + l )b  and 6 is the initial acceleration of the wall. The 
reason for selecting this particular form oft, as a reference time will become 
apparent later. In terms of these variables (1) becomes 

pe0/pl, Pi are constants which can be determined from the shock equations. 
Because of the particular way in which the system is made non-dimensional, 
Qi is a constant equal to  2 / ( y -  1). Equation ( 2 )  can be integrated twice 
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with the boundary conditions f = U, = 0 at T = 0 to determine the path 
of the wall. From this and the flow variables at the wall the transmitted 
and reflected shocks can be determined. 

Consider first the transmitted shock. It starts at the point which defines. 
the cusp at the beginning of the envelope of the positive characteristics. 
Courant & Freidrichs (1948) show that this cusp occurs at T = 1, f = 1; 
The shock is then determined as follows. Neglecting entropy changes, 
the equation of the positive characteristic fg (see figure 2) is 

This must hold at the shock, whence 

Also 

where Msg is the shock Mach number at g. 

f - t f  = (T-T,)(U,f Af). 

tg - f, = ( T ,  - Tf)( u, + 4). ( 3  ). 

dfgldTg = Myg, (4), 
Since U is constant along fg, 

Since f,, A,, U, are known functions of r f ,  (3)  and (4) can be integrated to. 
find the coordinates of the transmitted shock. The boundary conditions. 
are &-,jdr, = 5, = 1 at rg = 1. 

Similarly, for the reflected shock, 

f h - f e  = ( T h - T e ) ( U e - A r )  
and 

where F is defined by (5). The appropriate boundary conditions are 

d f h / d T h  = u, - A,(M,), = 0, 5 ,  = 0 at T h  = 0. 

The equations for the wall and those for the transmitted and reflected 
shocks are easily integrated numerically. Analytical solutions for the 
paths followed by the wall and shocks can be obtained, however, since the 
speed of the wall is conveniently represented by the series 

where Do, D,, D,, D,, ... and k are constants. k is positive. The form of (6) 
is suggested by the fact that the solutions of (2) show the behaviour V ,  + 0 
as T --f 0 and U ,  + constant as T + oc), together with the fact that for a weak 
incident shock 

U,, = C( 1 - eckls),  

where 

U,  = Do + D, ecLr + D, e-2ks + D, e--3LT + . . . , (6) 

The boundary conditions combined with the relations obtained by sub- 
stituting (6) in (2) are sufficient to determine the constants in (6). For 
moderate Mach numbers of the incident shock, only a small number of 
terms are required, three or four being sufficient for a Mach number of 1.5. 
The wall path is then obtained by integrating (6). The procedure for 
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determining the paths of the transmitted and reflected shocks is more 
complicated and in general i t  is simpler to calculate such paths by numerical 
integration. 

3. THE ASYMPTOTIC BEHAVIOUR OF THE SYSTEM 

The asymptotic speed of the wall can be determined from (2). This 
equation indicates that as the speed of the wall increases the acceleration 
decreases and eventually becomes zero. The final strengths of the shocks 
can be obtained from the final speed of the wall, since the fluid behind 
the shocks will be moving at the same speed as the wall. However, the 
asymptotic behaviour of the system can be obtained exactly, and indepen- 
dently of the above analysis, by one of a number of physical arguments 
which are true for any strength of incident shock. Such an argument is 
as follows. For a given incident shock Mach number, the only fundamental 
length in the problem is p w  r / p l ,  where p w  is the density of the wall material, 
Y the thickness of wall and p 1  the density of the fluid initially in the channel 
(a1& is’simply a constant multiple of p z , ~ / p l ) .  The strength of the 
transmitted shock can then depend only on the distance parameter 
t‘ = x p l / p w r ,  and its asymptotic value is obtained when f ’+ 00. This 
shows that the same shock strength is obtained whether x --f co or p W y  -+ 0. 
The case p w r  = 0 corresponds to the flow without the wall present and it 
can therefore be concluded that as x -+ co the strength of the transmitted 
shock tends to the strength of the incident shock. The reflected 
shock eventually becomes vanishingly weak. Although the transmitted 
shock eventually attains the same strength as the incident shock it will not 
at a given instant of time have reached the position that the incident shock 
would have reached if it had not encountered the wall. When the quasi- 
steady state is attained there will be a constant displacement between the 
position of the transmitted shock and the position that the incident shock 
would have reached. An expression for the amount of the displacement 
can be found as follows. 

Figure 3 (a) shows a piston moving in a channel of uniform cross-section. 
The piston is started impulsively from rest at time t = 0 and continues to 
move with a constant speed u2. A shock is generated which moves away 
from the initial position of the piston face with a constant speed w until 
it encounters a movable wall situated sufficiently far ahead of the piston 
to ensure that no disturbance travels back to the piston. Figure 3 ( b )  
illustrates the case in which no wall is encountered. An expression is 
sought for the final value of the displacement 6 between the two shocks. 
It will be supposed that in (a) the transmitted shock has not quite attained 
the strength of the incident shock. Define for (u) a velocity uh such that 

jI-* pu dx + pu, ru, 
I 

u2 = 
( L P 2 - G P l ) + P w r  ’ 

( L p z - 8 p l )  being the mass of the fluid between the shock and the piston 
in (a) .  u; will be close to the linear mean velocity of the fluid between the 
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shock and the piston in (a).  Since the pressure on the pistons in both cases 
is the same and constant, the momentum contained between the pistons 
and some control surface ahead of the shocks must, at any instant of time, 
be the same for both systems. Therefore 

and so 

Put u2-uL= Au, where Aulu, < 1, and note that L = (w-u2)t  and 
(w-u2)p2 = wp,, where w is the speed of the incident shock and t is the 
time measured from the instant at which the piston commenced to move. 
Then 

Now suppose that Au = B/tn,  where n is positive. Equation (7) shows 
that, if n < 1, 6 + - co as t -+ co, which is clearly impossible. If n = 1, 
6 is independent of t and therefore independent of Au. This is also 
impossible since dS/dt is a function of Au. Or, more simply, if Au is not 
zero the shocks are not of equal strength and 6 must change with time. 
Therefore n > 1 is the only case admissible. As t + co, 6 -+ pwr/pl. 

L P  2 u2 = NLPZ - SP 1) -k P w TI& 

6 = P w ‘If 1 - L P  2(UZ - u31.H. 

6 = pw rip1 - wtAu/u2. (7) 

PISTON 
C M R O L  k 8 3  SURFACE’, 

I ’  

Figure 3. The displacement of the transmitted shock from the position that the 
incident shock would have attained if it had not encountered the wall. 

’ 

The fact that the transmitted shock must eventually become equal in 
strength to the incident shock provides a useful check on the approximate 
theory. I t  also gives an indication of how peo/pl,  which appears in (Z), 
should be determined. Consistently with the approximate theory, peo/pl 
may be calculated assuming isentropic compression through the reflected 
shock, or alternatively, the shock relations may be used to determine the 
.exact value of p,, /pl .  On first thoughts it might appear that there would 
be some advantage in having the initial pressure difference across the wall 
correct. Figure 4 shows plots of the ratio ( U ,  approx.),,,/( Uw true),,, 
against incident shock Mach number. The upper curve is obtained using 
the ‘ isentropic ’ value of pe0/pl, whereas the lower curve is determined 
.with the exact value of p,, /pl .  The approximate theory appears to be 
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(-J,w~-+, 0.9 .  
OJ, true)%& 

The behaviour of the wall, the transmitted shock and the reflected shock 
have been computed for an incident shock Mach number of 1.500. Figure 4- 
shows that at this incident shock Mach number the final speed of the wall 
as predicted by the approximate theory differs from the true final speed 
by about 1%. The computed results are summarized in figures 5 , 6  and 10. 
In  figure 10, where the experimental results are compared with the theory, 
the paths of the wall, the transmitted shock and the reflected shock are 

(bisektropic" 

gzz-- 
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shown. Figure 5 shows the variation with time of wall acceleration and 
of wall speed. Figure 6 shows how the strengths of the transmitted and 
reflected shocks vary as they propagate, together with the asymptotic values 
of M ,  - 1. The fact that these asymptotic values differ by only small amounts 

0 . 5  
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0 
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Figure 6 .  Variation in the strength of the transmitted and reflected shocks. 
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from 0.500 and 0 respectively is a further indication that the error in the 
approximate theory for an incident shock Mach number of 1.500 is small. 

4. THE SHOCK TUBE 

The shock tube at the Mechanics of Fluids Laboratory is of rectangular 
cross-section 5.785 in. deep and 1.500 in. wide ; it is 13 ft. 6 in. long and 
closed at one end. The diaphragm is 12 ft. from the closed end and the 
high pressure section is maintained at atmospheric pressure. The required 
pressure ratio across the diaphragm is achieved by evacuating the low 
pressure section of the shock tube. The shock speed is measured by timing 
the passage of the shock between two schlieren light screens placed 1 ft. 
apart. Investigations are usually made by schlieren spark photography, 
and photographs, only one per run, can be taken at known pre-set delays 
after the shock passes the second light screen. The use of the shock tube 
is limited to a shock Mach number below about 1.9, because above this the 
density in the shock tube becomes too low for the light screens to function. 
A general description of the tube together with its instrumentation is given 
by Lapworth (1954). 

5. EXPERIMENTS 
The object of the experimental study was to determine the motions of 

the wall, the transmitted shock and the reflected shock by taking photographs 
of the interaction at various known time intervals after the incident shock 
had passed the second light screen. 

The experimental conditions were chosen to make the scale of the 
experiment suit the size of the shock tube(a,t, = 4in. orb = 3 x 106ft./sec2). 
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For an incident shock Mach number of 1.500 a cellulose acetate sheet 
0.0017 in. thick gave a, t, = 4.025 in. and b = 3.100 x 106ft./sec2. Some 
experiments were carried out with walls of 0.0010 in. and 0.0030 in. thick 
cellulose acetate, using the same incident shock Mach number, to check 
that the results (in non-dimensional form) were, as the theory suggested, 
independent of the mass of the wall. 

Owing to the difficulty of mounting the wall in the full cross-section of 
the shock tube it was decided to use a channel of reduced cross-section, 
obtained by inserting liners in the working section. This scheme also had 
the advantage that the holding device for the wall could be shifted simply 
by moving the liners along the shock tube. The reduced channel was 
2-830 in. deep and 1-500 in. wide. 

POSITIONING 
WIRE 0010'DIA. 

MOUNTING PINS 
0030' DIA. TAPERED 

Figure 7. Liners, together with details of mounting pins and positioning wires. 

Lack of stiffness made it necessary to support the wall until it was struck 
by the shock. Support was provided by impaling each corner of the wall 
on a slender pin pointing in the direction in which the wall was to move. 
Figure 7 is a diagram of the liners showing details of the mounting pins. 
The vertical wires alongside the pins were provided so that the wall could 
be placed in the same position, against the wires, for each run. In  mounting. 
the wall it was required that the wall should as nearly as possible fill the 
cross-section of the working channel and also that it should be as plane as 
possible. Meeting these requirements was the most difficult part of the 
experiment. Figure 8 shows the device that was eventually used in mounting 
the sheet cellulose acetate. Strips of the wall material 1.500 in. wide were 
stretched and accurately held on the device by the movable clamp. The 
device was then carefully placed between the liners and the strip of wall 
material accurately positioned on the pins. A sharp knife was used to cut 
the wall to size in position. The wall was left with some wrinkles when the 
mounting device was removed, but when the shock tube was closed and the 
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pressure reduced the cellulose acetate dried slightly, shrinking in the process, 
and was left stretched plane on the pins". 

Experiments were carried out to measure the loss of mass of the cellulose 
acetate due to drying which was found to be of the order of 1%. Account 
was taken of this loss of mass. 

Figure 8. Device for positioning the wall. 

Measurements of the photographic negatives, 0.6 full size, were made 
with a travelling microscope accurate to & 0.0005 in. All measurements 
were made on the centre line of the working channel. The pressure in 
the shock tube was measured with a mercury manometer accurate to 
- + 0-2 mmHg. The ambient temperature was measured with a mercury 
thermometer accurate to 2 0.1" C. Throughout all experiments an 
endeavour was made to keep the variations of incident shock Mach number 
to within lo/, and this was nearly always achieved. 

6. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Figure 9 [plate 1) shows the wall in several positions after it has been 
struck by the shock. In figure 9 ( a )  the mounting pins, the positioning 
wires and the wall are seen, while in the others only the wall appears. 
During the early stages of its motion the wall remains very flat, but as it 
progresses aw-ay from its initial position the edges are observed to lag 
behind the main body of the wall. The curling of the edges increases as 
the motion of the wall proceeds, although the extent of the curling is not 

* The artifice of allowing material like cellulose acetate to dry in order to produce 
a taut diaphragm is well known domestically in the preparation of covers for jam-jars. 
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considerable until the wall has moved some distance. At x = 3-583 in., 
figure 9 ( d ) ,  the shape of the wall is still a good approximation to the ideal 
plane moving wall, but at x = 6-726 in., figure 9 (e), this is no longer the 
case since the wall has become distinctly curved. When the wall reaches 
x = 6.726 in. it has attained a speed which is about 90% of its final speed, 
and from then on its speed is changing only slowly so that most of the 
interesting part of the wall path has already been covered. It should be 
remembered that the plates showing the wall are photographs of different 
walls at the various distances and not photographs of the same wall at these 
distances. No attempt should therefore be made to follow too closely the 
distortions of the wall from one photograph to the next for it may occur 
that photographs of different walls in the same position are different in 
detail. The curling of the edges of the wall needs some explanation. 

Figure 10. Diagrammatic sketch of the shock wave pattern near a gap at the edge of 
the wail from which a shock wave is reflected. 

It appears that the curling of the wall edges results mainly from leakage 
past the edges of the wall. Figure 13 (plate 2) shows the interaction of a 
shock with a movable wall in which large gaps have intentionally been 
left at the top and bottom edges of the wall and figure 10 is a diagrammatic 
sketch of the interaction in the neighbourhood of a gap. Part only of the 
shock AB is seen in figure 13 (a) since it is very weak and since the schlieren 
photograph was taken with the knife edge perpendicular to the direction 
of flow. Approximate analysis of the normal reflection of a shock at a 
wall with a slit in it, by Whitham’s (1957) theory, together with the results 
of an experimental investigation by the author, suggest that the shocks AB 
and CD are too weak at the wall to be responsible for the observed curling. 
Modification of the pressure forces near the edges of the wall by the flow 
past the edges is thought to be the main cause of the curling. The fluid 
approaches the gap, accelerates, passes through the gap, separation occurs 
at the edge of the wall and a small supersonic jet forms. The decrease 
in pressure of the fluid approaching the gap reduces the pressure difference 
across the wall in the neighbourhood of the gap, causing the edges to lag 
behind the main body of the wall. Provided that the gaps are small and 
the curling slight, leakage should have only a small effect on the motion 
of the wall as a whole. 
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(a )  ( b )  (4 (4 (el 

Figure 9. The moving wall in several positions after being struck by the shock wave 
(a )  T = 0.300, 6 = 0.034, x = 0.144in. ; 
(b) T = 0.947, [ = 0.250, x = 1.035 in. ; 
( c )  T = 1.751, 6 = 0.644, x = 2.684 in. ; 
(d) T = 2.076, [ = 0.859, x = 3,583 in. ; 
(e )  T = 3.280, ( = 1.659, x - 6,726 in. 

(a )  ( b) (4 ( d )  (el 
Figure 11. The transmitted shock in various stages of formation 

(a) T .= 1.140, 6 =: 1.242, x : 5.122in. ; 
(b) T = 1.275, 6 = 1.396, x == 5.678 in. ; 
(c)  T = 1.670, 6 = 1.847, x = - ~  7.627 in. ; 
(d )  T .-: 2.520, 4 = 2.897, x : 11.987 in. ; 
(e )  T := 3.228, ( = 3.983, ,x =: 16.183 in. 
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(4 (b)  (4 ( d )  

Figure 12. The  reflected shock at several distances from the initial position of the wall. 

(a)  T = 0.178, [ = -0-170, x = - 0.685 in. ; 
(b) T = 0.358, 5 = -0.325, x = - 1.312in. ; 
(c) T = 0.688, 5 = -0.611, x = - 2.474 in. ; 
(d)  T = 3.388, 5 = -2.573, x = -10,494 in. 

( a )  ( b) 

Figure 13. Two stages in the motion following the impact of a shock wave on a 
movable wall along the top and bottom edges of which large gaps have been 
left. 
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Figure 11 (plate 1) shows the transmitted shock at various stages during 
its formation. Figures 1 1  (a) and (b)  show that during its initial stages the 
transmitted shock is far from plane and its ends are forked. This is due 
to the fact that the transmitted shock is composed not only of compression 
waves coming from the accelerating wall but also of weak shocks which 
originate at the gaps around the edges of the wall. The transmitted shock 
is thus the result of the interaction of four approximately cylindrical shocks, 
some of which may be stronger than others, and the compression waves 
coming from the accelerating wall. The nature of the shocks coming from 
the gaps and their interaction are shown in figure 13 (plate 2). Figures 11 (c), 
(d)  and (e)  (plate 1) show that as the transmitted shock propagates it soon 
takes up the stable plane form for a shock travelling in a straight duct of 
uniform cross-section. 

t 
I I I I I I I I --.-I 

-3 - 2  - I  0 1 x 2  3 4 

Figure 14. Comparison of the theoretical and experimental results. 

Figure 12 (plate 2) shows the reflected shock at several distances from 
the point at which the incident shock struck the wall. In figure 12(a) 
the mounting pins, the positioning wires and the reflected shock are seen 
while in the others only the reflected shock appears. The reflected shock 
is plane to start with, but as it moves away from the initial position of the 
wall it becomes curved at the channel walls and woolly in appearance. The 
curving and the woolly appearance are due to the growth of the boundary 
layer on the channel walls. In  figure 12(d)  the boundary layer on the 
channel walls appears to be relatively thick. 

Before 
discussing the comparison in detail it would be as well to consider the 
relative sizes of the errors in the theory and those in the experimental 
technique. It has already been stated that for an incident shock Mach 
number of 1.500, the approximate theory predicts the final speed of the 
wall with an error of the order of 1%. Figure 6 indicates that the final 

F.M, x 

Figure 14 compares the theoretical and experimental results. 
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Mach numbers of the transmitted and reflected shocks are also given with 
an error of approximately 1%. If it is assumed that the approximate 
theory gives the wall speed and the shock Mach numbers correct to 1% 
for all times, then the displacements of the wall, the transmitted shock and 
the reflected shock will also be given with an error of only 1%. Since the 
errors in the experimental technique are about 1% the errors in the 
approximate theory are not thought to be significant in the comparison 
of the theoretical and experimental results. 

Referring again to figure 14, it will be seen that there is good agreement 
between the theoretically determined curve for the path followed by the 
wall and the experimentally determined points. It is also apparent that the 
results are, as expected, independent of the mass of the wall. The 
experimental points for the reflected shock agree well with the theoretical 
curve for the initial part of the shock path, but for larger times the shock 
lags behind the position predicted by theory. Part at least of this lag is 
due to leakage past the edges of the wall and leakage past the sides of the 
liners, which were made 0.20in. narrower than the shock tube to avoid 
damaging the working section windows. The experimental results for the 
transmitted shock show two distinct departures from the theoretically 
determined shock. In the first place, a shock appears in the region 0 < ( < 1 
where theory predicts none and, secondly, the experimental points appear 
consistently ahead of the theoretically determined shock. The appearance 
of shocks in the region 0 < 5 < 1 is due simply to shocks getting past the 
edges of the wall. The displacement is probably due to leakage past the 
edges of the wall and to leakage past the sides of the liners ; the displacement 
at f = 1, T = 1,  where, in theory, the transmitted shock wave should just 
begin to form, is mainly due to the former type of leakage. It is difficult 
to give a detailed analysis of the effect of leakage, but a simple model can be 
imagined which will probably yield an answer of the correct order of 
magnitude. Assume that the gap is uniformly distributed over the wall 
or, in other words, that the wall is porous. Further assume that the leakage 
through the wall and the wall acceleration remain constant for a short time. 
The contact surface, which separates the gas which has passed through the 
wall and that which has not, moves away from the wall with a constant 
speed, and so the transmitted shock can be imagined as resulting from the 
motion of a piston which is impulsively given a small speed and then 
accelerates with the acceleration of the wall. The transmitted shock starts 
at f = 0, T = 0, and by using Friedrichs’ (1948) theory, the position of the 
transmitted shock at T = 1 can be found for a given initial velocity of the 
contact surface. Or, given the position of the shock at T = 1, the initial 
velocity of the contact surface can be found. From this, assuming 
isentropic expansion through the wall, the leakage area of the wall can be 
determined. According to this argument the observed displacement was 
consistent with a leakage area equivalent to a gap of 0.005 in. along all 
edges of the wall. This appears to be of the correct order of magnitude, 
bearing in mind the difficulty of arranging the flimsy wall-material, 0.0017 in. 
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thick, to fill completely the cross-section of the tube and the gap of 0.01 in. 
between the liners and the walls of the shock tube. 
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